
In Memoriam: Per Lindström

When Per Lindström — or Pelle Lindström as he insisted on being called —
died on August 21, 2009, Sweden lost one of its internationally most renowned
mathematical logicians. Pelle Lindström was a rather withdrawn person, not
a frequent conference participant, and he did not feel that his results, once
published, needed further advertising: they should speak for themselves. So al-
though he was well known to logicians all over the world, and to his colleagues in
Sweden, his work was not as widely known outside this limited circle as perhaps
it should have been. Indeed, the results for which he is famous — nowadays
collected under the label Lindström’s Theorem — are not only innovative and
rich in mathematical content, but they also have philosophical implications that
anyone interested in the role of logic will do well to be aware of.

Pelle Lindström was born on April 9, 1936, and spent most of his academic
life at the Department of Philosophy, University of Gothenburg, where he was
employed first as a lecturer (‘docent’) and, from 1991, as a Professor of Logic,
until his retirement in 2001. During his school years he showed little interest
in the subjects taught, including mathematics. It was during his beginning
university studies, in first practical and then theoretical philosophy,1 that he
became interested in logic, and began to develop his remarkable mathemati-
cal talent. Although he had contact with other Swedish logicians such as Stig
Kanger in Uppsala and Sören Halldén in Lund, he had no teacher, but essen-
tially taught himself mathematical logic, apparently by reading Kleene’s Intro-
duction to Metamathematics which appeared in 1952, and Tarski’s, Vaught’s,
and Robinson’s model-theoretic papers from the fifties.

Between 1964 and 1966 Pelle Lindström published four papers in Theoria
which were to constitute his PhD dissertation. Each of these papers contained
important results in model theory. ‘On model-completeness’ (1964) gives a cri-
terion for a theory to be model-complete — a property Robinson had introduced
for studying relations between model theory and algebra — which today is usu-
ally called Lindström’s test for model-completeness. In ‘On characterizability in
Lω1ω’ (1966) he proved that the notion of well-order is not definable even if ad-
ditional predicates are allowed and even in a logic that extends first-order logic
(FO) by allowing countable conjunctions and disjunctions of sentences (a result
proved independently and in more general form by Lopez-Escobar). The proof
was an early example of the use of recursion theory to prove model-theoretic
results. Further, in the early sixties Lindström had independently rediscovered
what is now called the Ehrenfeucht-Fräıssé (EF) method of characterizing ele-
mentary equivalence between two models (i.e. that the same FO sentences are
true in them), and in ‘On relations between structures’ (1966) he used that
method to obtain a powerful interpolation/preservation theorem for FO. But
the paper from his dissertation that was to have the most profound impact was

1Academic philosophy in Sweden is by tradition divided into practical and theoretical
philosophy, the first dealing with moral philosophy, philosophy of action, political philosophy,
etc., and the second with metaphysics, epistemology, logic, philosophy of mind, philosophy of
language, etc.
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‘First order predicate logic with generalized quantifiers’, also from 1966.
In an article from 1957 Mostowski had generalized the usual FO quantifiers

∀ and ∃ to cardinality quantifiers: just as ∃xAx says that (the extension of) A is
non-empty, and ∀xAx that the complement of A with respect to the universe of
the model, M−A, is empty, so one can take QxAx to express any given condition
on the cardinalities of A and M −A. For instance, we have the quantifiers Qα,
where QαxAx says that A has cardinality at least ℵα. Adding such quantifiers
to the expressive means of FO can considerably increase expressive power. For
example, if one adds Q0, ‘there are infinitely many’, the standard model of
arithmetic (consisting of the natural numbers with addition and multiplication)
becomes characterizable (up to isomorphism) with a single sentence. In his 1957
paper Mostowski gave a semantic characterization of FO among all logics based
on his quantifiers. The proof of this characterization was rather simple, mainly
because Mostowski’s concept of a quantifier was so limited.

Pelle Lindström had first assumed that Mostowski had a completely general
concept of (generalized) quantifier, but then saw that this wasn’t so. First, a
quantifier should be able to apply to more than one formula, thusQx(ϕ1, . . . , ϕk)
rather than Qxϕ, and bind x in each ϕi. For example, he realized (inspired by
a remark by Rescher), that a simple condition like ‘Most A are B’ (meaning
that the number of As that are B is greater than the number of As that are not
B) is not expressible by means of Mostowski’s quantifiers (in contrast with, say,
‘Infinitely many A are B’ , which is expressible by means of Q0 and Boolean con-
nectives). Second, a quantifier should be able to bind more than one variable in
a formula. Thus, one may allow formulas like Qx;xy(Ax,Rxy), which expresses
that the binary relation R well-orders the set A, a condition not expressible
with quantifiers binding just one variable. As he himself recalled, “These sim-
ple observations opened up a landscape of surprising richness and variety.”2 In
fact, his notion of a generalized quantifier, nowadays often called Lindström
quantifier, has become a standard tool not only in model theory, but also in
theoretical computer science and in formal semantics for natural languages.

Furthermore, he also saw that the EF method can yield results about logics
with generalized quantifiers. Already in the 1966 paper, he used that method
to characterize FO as maximal with respect to certain properties. These char-
acterization results were greatly improved and generalized in his ‘On extensions
of elementary logic’ from 1969. This eleven page paper, also published in Theo-
ria, is without a doubt Pelle Lindström’s most important single contribution
to mathematical logic. In it, he uses a surprisingly general notion of a logic:
an (abstract) logic L is simply a pair (SL, |=L) of a set SL whose elements
are called sentences, and a relation |=L between models and sentences, where
M |= ϕ reads ‘ϕ is true in M’. L should satisfy some structural properties,
such as isomorphism closure: If M |= ϕ and M′ is isomorphic to M, then
M |= ϕ. Also, L should have negation and conjunction, so that, for example,

2‘Prologue’, p. 22, in M. Krynicki, M. Mostowski, and L. Szczerba (eds.), Quantifiers:
Logics, Models, and Computation, D. Reidel, Dordrecht, 1995). In this short note Lindström
gives an interesting account of how he arrived at the notion of a generalized quantifier and
the subsequent characterizations of first-order logic.
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for every L-sentence ϕ there is an L-sentence which is true in a model exactly
when ϕ is not true in that model. Now, there is a natural way of comparing the
strength of such logics: L′ is at least as strong as L, L ≤ L′, if every L-sentence
is equivalent to (true in the same models as) some L′-sentence, and L and L′

are equivalent, L ≡ L′, if L ≤ L′ and L′ ≤ L. Lindström’s Theorem has the
form: If FO ≤ L, and L has certain familiar properties, then in fact FO ≡ L.

First-order logic, FO, has become the logical formalism par préférence for
at least two reasons. First, it has sufficient power to express most of modern
mathematics (via the first-oder formalization of Zermelo-Fraenkel set theory).
Second, it has several important properties, such as completeness: the set of its
valid sentences (the sentences true in all models) can be effectively generated
from certain simple axioms (the set is recursively enumerable). It has long been
known that these properties hinge on FO not being too expressive. For example,
it follows from Gödel’s incompleteness theorem that a logic in which Q0 is
expressible, and thus the standard model of arithmetic is characterizable, cannot
be complete. What Lindström’s Theorem does is to provide an explanation of
this state of affairs.

Here are some well-known properties of FO, that can be stated for an arbi-
trary logic L:

• The Löwenheim property : every sentence which has (is true in) an infinite
model has a countable model. (Also, stronger versions like the Löwenheim-
Skolem property : every theory (set of sentences) in a countable language
with an infinite model has a countable model.)

• The Tarski property : every sentence with an infinite model has an un-
countable model. (A stronger version is the upward Löwenheim-Skolem-
Tarski property, which generalizes to theories, and says that there are
models in every infinite cardinality.)

• (Countable) compactness: If every finite subset of a (countable) set of
sentences has a model, then the whole set has a model.

• Completeness: The set of valid sentences is recursively enumerable.

• The Craig interpolation property : If ϕ |= ψ (i.e. ψ is true in every model
in which ϕ is true), there is an interpolant : a sentence θ containing only
non-logical symbols common to both ϕ and ψ, such that ϕ |= θ and θ |= ψ.
This property is known to imply:

• The Beth definability property : If a sentence implicitly defines a predicate
P occurring in it, then it also explicitly defines P .3

3ϕ implicitly defines P if every model of ϕ has at most one interpretation of P . It explicitly
defines P if there is a formula ψ in the same symbols but not containing P , such that in every
model of ϕ, P and ψ have the same extension.
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In the paper mentioned, Lindström proved the following results.4

Theorem: If FO ≤ L and L has one of the following combinations of proper-
ties, then FO ≡ L:

(a) The Löwenheim property and countable compactness.

(b) The Löwenheim and Tarski properties.

(c) The Löwenheim property and completeness.

(d) The Löwenheim property and the Beth definability property.

Several further characterizations of FO, all due to Lindström, are known.5

Let us return to the question, why is it that first order logic has become the
logical formalism par préférence. Are there some deeper reasons for this or is it
just a coincidence or a matter of convenience? What Lindström’s Theorem does
is nothing less than to sharply reveal such deeper reasons. If we extend first-
order logic, we lose one or several of the very properties that make first-order
logic so useful. It says in effect (think of (b)) that any formal language that goes
beyond first-order logic has to distinguish between some infinite cardinalities in
the sense that some sentence has a model of some infinite cardinality but not of
all infinite cardinalities. Loosely speaking, Lindström’s Theorem tells us that
any proper extension of first-order logic has to detect something non-trivial
about the set-theoretic universe. On the other hand, Lindström’s Theorem
reveals a deep robustness of first-order logic: it does not matter which way you
define your syntax — as long as your semantics obeys certain basic principles
(like (a)–(d) above): you will always get the same logic. It is remarkable that
despite initial optimism very few — if indeed any — other logics have emerged
with robustness of similar caliber.

From the mid-seventies and onwards, Lindström’s research in logic focused
on the area of arithmetized metamathematics. In particular, he was interested
in the relation of interpretability between theories containing some arithmetic.
This work is a continuation of the results and methods introduced by Gödel with
his incompleteness theorems. Gödel had proved in 1931 not only that a consis-
tent theory T containing some arithmetic (such as first-order Peano arithmetic,
PA) is incomplete,6 but also that (an arithmetized version of) the statement

4There are some slight differences as to what is required of L in (a)–(d). In particular, Lind-
ström proved (d) for logics with generalized quantifiers (note that Lω1ω has the Löwenheim
property and the Beth definability property), but it holds in general if some extra computabil-
ity assumptions are made on L. For exact formulations and proofs see, for example, J. Flum,
‘Characterizing logics’, in J. Barwise and S. Feferman (eds.); Model-theoretic Logics, Springer,
New York, 1985, 77–120.

5See his papers ‘A characterization of elementary logic’ (in Modality, Morality, and other
Problems of Sense and Nonsense, Gleerups Bokförlag, Lund, 1973, 189–191), ‘On character-
izing elementary logic’, in S. Stenlund (ed.), Logical Theory and Semantic Analysis, Synthese
Library vol. 63, D. Reidel, Dordrecht, 1974, 129–146), and ‘Omitting uncountable types and
extensions of elementary logic’ (Theoria 44, 1978, 152–156).

6Gödel assumed T had the stronger property of ω-consistency; that consistency is enough
was shown by Rosser in 1936.
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that T is inconsistent, ConT , is itself an example of a sentence which is true
but unprovable in T . These results were taken further by Feferman in the late
fifties. For example, he strengthened Gödel’s result to the statement that the
theory obtained by adding ConT as an axiom to T is not even interpretable in
T .7 Moreover, he showed that these facts about ConT hinge on the exact formu-
lation of that sentence: there is a sentence Con ∗T in the language of arithmetic
which extensionally expresses that T is consistent but which is provable in T . It
turns out that such sentences are no mere curiosity but an essential tool in the
theory of interpretability that was initiated by Feferman. Using them, he was
able to prove that (roughly) a theory S is interpretable in T if and only if there
is a sentence extensionally expressing that S is consistent which is provable in
T . In other words, the notion of interpretability, for this type of theories, turns
out to be essentially tied to the provability of consistency statements.

This line of research, which had lain dormant (with a few exceptions) since
Feferman left it in 1960, was taken up by Pelle Lindström, and at about the
same time but independently, by a group of logicians around Petr Hájek in
Prague. Lindström contributed several memorable results in this and related
areas. His approach to interpretability was abstract: he studied various lattices
of degrees of interpretability (classes of theories mutually interpretable in each
other), such as the lattice generated by a fixed extension of PA, or the lattices
of Σn- and Πn-sentences over PA, for fixed n. The results are technical and
many have extremely clever proofs. For example, there is the Lindström fixed-
point construction, a far-reaching generalization of Gödel’s diagonal method;
such constructions continue to be crucial in this area of research, ever since
Gödel used it to construct a sentence ‘saying’ of itself that it is not provable.
Other results include the Lindström-Solovay theorem that the interpretability
relation between sentences over PA is Π0

2-complete, and the characterization of
faithful interpretability over PA as a combination of Π1- and Σ1-conservativity.
He also contributed to provability logic and interpretability logic, in which the
provability predicate (or the interpretability relation) is treated as a sentential
operator in the style of modal logic. Most of the results on interpretability are
presented in detail in his book Aspects of Incompleteness from 1997 (Lecture
Notes in Logic, Springer; second edition in 2002 published by the Association
of Symbolic Logic). Very readable are also the two survey papers he published
in Theoria: ‘Provability logic – a short introduction’ (no. 62, 1996, 19–61), and

7Roughly, S is interpretable in T if there is a formula σ(x) of T , defining the ‘universe’ of
the interpretation, and a translation from the language of S to the language of T such that
the translation of every theorem of S, relativized to the universe given by σ(x), is provable
in T . The main use of interpretability is to show relative consistency results, since if S is
interpretable in T and T is consistent, S must also be consistent. A classical example is
the consistency of various non-euclidean geometries, obtained by showing that they can be
interpreted in euclidean geometry. Tarski had applied the notion of interpretability to obtain
numerous results about consistency and undecidability for arithmetical theories; see the book
Undecidable Theories by Tarski, Mostowski, and (R.) Robinson (North-Holland, Amsterdam,
1953). Feferman was the first to study interpretability for its own sake. His classical paper
is ‘The arithmetization of metamathematics in a general setting’, Fundamenta Mathematicae
49, 1960, 35–92. For an interesting recollection of how these results emerged, with a reference
to Lindström’s work, see his ‘My route to arithmetization’, Theoria 63, 1997, 168–181.
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‘Interpretability in reflexive theories – a survey’ (no. 63, 1997, 182–209).8

Throughout his life Pelle Lindström also took an active interest in philo-
sophical issues. In fact, many of those who knew him have vivid memories of
heated discussions (in seminars, in cafeterias, or in his home) on logic, philos-
ophy, literature, music, politics, and other topics. Intellectual discussion and
argument was his passion. For example, he had strong views on the philosophy
of mathematics, but he was for a long time reluctant to publish them, feeling he
didn’t have enough to say. Eventually he did, however (‘Quasi-realism in math-
ematics’, The Monist 83, 2000, 122–149), expounding, among other things, his
‘quasi-realist’ view that the visualizable parts of mathematics were beyond doubt
and that classical logic holds for them.9 To the visualizable parts he counted
not only the ω-sequence of natural numbers, but also the set of arbitrary sets
of natural numbers, since this set can be visualized by means of branches in the
infinite binary tree, whereas nothing similar can be said for e.g. sets of sets of
numbers. But he also published on other philosophical topics: he contributed
over the years numerous short papers and notices to the Swedish popular phi-
losophy journal Filosofisk Tidskrift, on issues as diverse as the freedom of the
will, the mind-body problem, utilitarianism, and counterfactuals.

Pelle Lindström remained active in logic and philosophy until the end. As
late as 2006 he published in the Journal of Philosophical Logic a paper on
various ways to prove the de Jongh-Sambin fixed point theorem in provability
logic, including his own simplified proof(s) (JPL, 2006, 225–230). And he had
two papers in the same journal, in 2001 and 2006, on Roger Penrose’s attempts
to revive the argument that Gödel’s incompleteness theorem shows that the
mind cannot be mechanical.10 Furthermore, a paper with V. Shavrukov, ‘The
∀∃ theory of Peano Σ1 sentences’ will appear in Journal of Mathematical Logic,
another contribution to Filosofisk Tidskrift is about to be published, and a
book manuscript, First Order Logic, where he presents first-order logic and its
properties in just the way he thought it should be presented, is also under
publication.

Pelle Lindström was a true logician. He put his energy only into the deepest
questions of logic, such as the semantic character of logic, the extent of in-
completeness in number theory, and the fundamental questions in philosophy of

8Thus, he remained faithful to Theoria; we have now mentioned each of the eight (!)
papers he published there. Some have complained that Lindström’s Theorem would have
become quicker known among logicians — it took a couple of years before that happened — if
he had published his results in a journal more familiar to mathematical logicians. Not being
one for advertising himself, we think he simply felt it a duty to his academic background to
publish in a Swedish journal.

9The view is quasi-realist in that he agreed with Kreisel’s dictum that it is not the existence
of mathematical objects which is at stake, but the objectivity of mathematical truths.

10Penrose presented such an argument first in The Emperor’s New Mind (Oxford Univer-
sity Press, 1989), then a different and more detailed argument in Shadows of the Mind (OUP,
1994), and finally a third version in ‘Beyond the doubting of a shadow. A reply to com-
mentaries on Shadows of the Mind’, Psyche 2, 1995, 89–129. In ‘Penrose’s new argument’
(JPL 30, 2001, 241–250) and ‘Remarks on Penrose’s ‘new argument” (JPL 35, 2006, 231–237),
Lindström drew on his metamathematical expertise to argue that Penrose’s reasoning was far
from conclusive.
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mathematics. He did not publish vigorously and he traveled sparingly; but when
met in person, he was a vivid lecturer and despite (or perhaps because of) his
intimidating sharpness, a wonderful person to talk to. Like Skolem, he stands
out as a Scandinavian logician whose name will always remain a household name
in logic.

Jouko Väänänen
Dag Westerst̊ahl

7


