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Abstract

The main difference between the classical Aristotelian square of oppo-
sition and the modern one is not, as many seem to think, that the classical
square has or presupposes existential import. The difference lies in the
relations holding along the sides of the square: (sub)contrariety and sub-
alternation in the classical case, inner negation and dual in the modern
case. This is why the modern square, but not the classical one, applies
to any (generalized) quantifier of the right type: all, no, more than three,
all but five, most, at least two-thirds of the, . . . After stating these and
other logical facts about quantified squares of opposition, we present a
number of examples of such squares spanned by familiar quantifiers. Spe-
cial attention is paid to possessive quantifiers, such Mary’s, at least two
students’, etc., whose behavior under negation is more complex and in
fact can be captured in a cube of opposition.

Keywords: generalized quantifiers, monotonicity, possessive quantifiers, square
of opposition

1 Background

1.1 Squares

A square of opposition illustrates geometrically a particular way that negation
interacts with certain operators. In the quantified square (Figure 1), the opera-
tors are the Aristotelian quantifiers, but several other operators follow a similar
pattern (Figure 2). In these squares – here in addition a modal square, a tem-

∗I thank the audiences at the 1st Square Conference in Montreux, June 1–3, 2007, and the
10th Mathematics of Language Workshop at UCLA, July 28–30, where earlier versions of this
paper were presented, for useful comments. In particular, Larry Horn’s remarks were valuable
to me. Section 4.4 of the paper builds on joint work with Stanley Peters on the semantics
of possessives. The version presented at the MoL Workshop was delivered in honor of Ed
Keenan on the occasion of his 70th birthday. In several of his publications over the years,
Ed has explored to the general notion of inner negation, which he calls post-complement, and
which is a crucial ingredient in the modern square of opposition. Work on this paper was
supported by a grant from the Swedish Research Council. A much abbreviated version of it
appeared in Westerst̊ahl (2008).
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poral square, and a propositional square – you have ordinary, contradictory or
outer negation along the diagonals, and various weaker forms of negation as well
as other logical relations along the edges of the square. Precisely what these
other relations are is a matter of debate, as we will see presently. But an easily
identifiable rough pattern is common to all these squares. For example, the
deontic square replaces necessary by obligatory, impossible by prohibited, and
possible by permitted.

In a clear sense, the quantified square is the fundamental one: it recurs when
you spell out the meaning of the operators in the other squares. For example,
a conjunction is true iff all its conjuncts are true, and a disjunction is true
iff some of the disjuncts are. Likewise, a proposition is necessary iff it is true
under all circumstances (in all possible worlds), it is possible if true under some
circumstance, and impossible if true under none.1

1.2 The Aristotelian square

In this paper we focus on the quantified square, and more generally on the in-
teraction between negation and quantification. Let us draw the classical quan-
tified square, that I will simply call the Aristotelian square (its content was
described in words by Aristotle, and it was drawn as a square by Apuleios and
Boethius some 800 years later), in somewhat more detail. In Figure 3, the only
non-standard notation is allei, which is the universal quantifer with existential
import, i.e. such that allei(A,B) is true iff A is non-empty and included in B.
This is what Aristotle and most of his medieval followers, in agreement with
many philosophers and most linguists today, took words like “all” and “every”
to mean. In contrast, Frege and most logicians after him take them to stand for
the quantifier all without existential import: all(A,B)⇔ A ⊆ B. I come back
to this issue presently, but let me for the record first describe the content of the
Aristotelian square.

The (medieval) naming A, E, O, I of the four corners is handy and will
be used consistently in what follows. As to the logical relations depicted in
the square, we have, aside from contradictory negation along the two diago-
nals, the relations of contrariety, subcontrariety, and subalternation along the
sides. These are seen as relations not between the quantifiers themselves but
the corresponding statements made with them. Thus, ϕ and ψ are contrary iff

1One square whose contents were discussed by Aristotle falls partly outside this pattern.
This is the singular square (Horn, 1989, §§1.1, 7.2–3):

a is B a is not-B

a is not not-B a is not B

The crucial notion here is that of predicate negation. E.g. one may distinguish not-white (or
not white) as a ‘logical’ contrary of white, whereas black is a ‘polar’ contrary (along a color
scale), and brown yet another kind of contrary (it is a contrary since nothing can be both
white and brown). There are intricate linguistic (and possibly logical) issues involved, but
they don’t have much to do with quantification, and I shall disregard them here.
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Figure 3: The Aristotelian square

they cannot both be true, subcontrary iff they cannot both be false, and ψ is
subalternate to ϕ iff whenever ϕ is true, so is ψ (i.e. iff ϕ implies ψ).2

That the A and E corners are contrary clearly shows that the universal quan-
tifier must be taken to have existential import in this square. The same conclu-
sion follows from the fact that A is held to imply I. But whereas few linguists
or philosophers have had doubts about this, there has been much uneasiness
about the consequence that the quantifier at the O corner, the contradictory
negation of allei, then must have the truth conditions: not allei(A,B) iff either
A is empty or something in A is not in B. It doesn’t seem very plausible that
a sentence of the form “Not all As are B” would mean that. Various remedies
have been suggested. One, that may initially appear to have some plausibility,
is to say that all corners have existential import. Thus, for example, “No As are
B” would amount to “There are As, but none of them are B”. Alternatively,
one might even stipulate that ‘empty terms’ are simply prohibited.

I will not follow any of these routes. My main reason is a simple (Gricean)
distinction between the truth-conditions of a sentence and when it is appropriate
to utter it. If I know that there are no girls in your class, it is inappropriate for
me to say

(1) No girls in your class came to the party.

But it surely isn’t false. Having been at the party, I may utter (1) appropriately,
believing there are girls in your class; your informing me that there aren’t any
doesn’t compel me to retract (1). Retracting it would amount to saying

2One often adds the requirement that ϕ and ψ can both be false in the definition of
contrariety, and likewise that ϕ and ψ can both be true in the definition of subcontrariety.
Everything I say below about these notions holds for the revised definitions as well.
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(2) Some girls in your class came to the party.

but I know this is false. The distinction is nowadays accepted by most theorists,
I think. For another example, if I know that Mary is at home, it is inappropriate
for me to say

(3) Mary is either at home or at the movies.

It is even misleading to say so, but it clearly isn’t false. No one concludes from
the inappropriateness of (3) in that situation that A is sometimes true even
though A ∨B is false!

So we shouldn’t take no to have existential import. (The case of all is
slightly more complex and will be returned to below.3) As indicated in the
diagram above, statements can be classified according to quality : they are ei-
ther affirmative or negative; negative statements don’t make existential claims
in the Aristotelian square, but affirmative ones do. Another classification con-
cerns quantity : in an obvious sense, a statement (of the relevant form) is either
universal or particular.

1.3 Plan

A number of square-related issues have been discussed in the literature, some
of them since the days of Aristotle. For example,

(a) What (if anything) is less valuable/real/natural/informative about nega-
tive statements as compared to positive ones?

(b) What (if anything) makes a statement negative rather than positive?

(c) Why is the O corner never lexically realized (in any language)?

(d) Can the corners be distinguished/ordered in terms of the simplicity (con-
ceptual, computational, or other) of the corresponding quantifiers?

(e) Does the A corner have existential import?

These issues will not be discussed, other than indirectly, here (except that I make
a brief remark on (d) in section 5).4 Instead, I will focus on the modern variant

3Aristotle’s own position on empty terms may be unclear, but many medieval philosophers
had no inhibitions whatever against them. A nice example is Paul of Venice (c. 1400, quoted
from Parsons (2004)), who claimed that the sentence

(i) Some man who is a donkey is not a donkey.

is true, since A = the set of men who are donkeys is empty. This in turn is an argument that
the truth conditions at the O corner are as we described them above, even if one uses the
form “some not” rather than “not all”.

4Horn (1989) is a classic history of negation, to which I refer for discussion of the above and
many other issues related to negation. For recent contributions to the discussion, in terms
of the idea of a natural logic for language, see Jaspers (2005) and Pieter Seuren’s Natural
Logic Project (a description is a available at his home page). While Horn (and many others)
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of the Aristotelian square. But my main aim is not to argue in favor of the
Fregean version of those four quantifiers. Rather, my point is that the modern
square, in contrast with the Aristotelian one, represents forms of negation that
are much more ubiquitous in language than the usual discussion reveals, and
that this particular square is just one example among indefinitely many others
with the same pattern of negation but with other quantifiers at the corners.
Indeed, any (generalized) quantifier (of type 〈1, 1〉), and thus any interpretation
of any simple or complex determiner, spans a modern square (but not a classical
one).

So my first task is to show that the ‘oppositions’ introduced by Aristotle, i.e.
(sub)contrariety and subalternation, though not uninteresting, are not quite the
ones to focus on in the study of natural language negation. The distinction may
seem subtle for Aristotle’s square, but it becomes obvious as soon as you consider
squares with other quantifiers. The second part of the paper, then, examplifies
how these new squares are manifested in language, and revisits some of the old
issues in this more general context. I end with a particularly interesting example,
that of possessive determiners, whose interpretation involves two quantifiers.
This allows a new form of negation, and is seen to be representatble in a cube
of opposition rather than a square.

2 Classical vs. modern squares

The modern or Fregean version of the Aristotelian square is drawn in Figure
4. At first sight, one may get the impression that the only difference is that
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Figure 4: The modern version of Aristotle’s square

considers (a) and (b) to be non-issues, he offers an interesting explanation of (c). Löbner
(1990) and Jaspers (2005) lay great emphasis on (d) (though their respective answers differ).
A pragmatic view on (e) is defended in Horn (1997), and, in a different way, in (Peters and
Westerst̊ahl, 2006, ch. 4.2.1). But, as we will see, there are more interesting issues of existential
import for quantifiers other than those in Aristotle’s square.
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all has replaced allei at the A and O corners (I continue to use these names
of the corners, but without writing them in the diagrams). Likewise, if one
disregards empty terms, the two squares seem to coincide. So the difference
might appear to boil down simply to different views about existental import.
But this impression is completely misleading, and it stems from considering
only the four Aristotelian quantifiers. Instead, the main difference consists in
the different choice of relations along the sides (not the diagonal) of the square.
Existential import is a side issue in this context.

In the modern square there are only two relations along the sides: inner
negation and dual, and like outer negation they can be seen as operations on
the quantifiers themselves:

(4) a. The outer negation ofQ, ¬Q, is defined by: ¬Q(A,B)⇔ not Q(A,B)

b. The inner negation of Q, Q¬, is defined by: Q¬(A,B)⇔ Q(A,M−
B) (where M is the universe)

c. The dual of Q, Qd, is defined by: Qd = ¬(Q¬) = (¬Q)¬

One sees that these relations do indeed hold as indicated in Figure 4. So it is
the same relation along both horizontal sides, in contrast with the Aristotelian
square, but more importantly, this relation has little to do with (sub)contrariety.
In general, as we will see, nothing prevents Q and Q¬ from being both true,
or both false, of the same arguments. Likewise, the relation along the vertical
sides has little or nothing to do with subalternation, since we may easily have
Q true and Qd false of the same arguments. The fact that allei(A,B) implies
some(A,B), and hence ¬no(A,B), is just incidental to that particular square.

To appreciate these points, we need a technical concept.

2.1 Type 〈1, 1〉 quantifiers

I only give the bare definitions necessary for what follows; for (much) more
about quantifiers, see Peters and Westerst̊ahl (2006).

(5) Definition. A (generalized) quantifier Q of type 〈1, 1〉 associates with
each universe M a binary relation QM between subsets of M .

Many such quantifiers interpret simple or complex determiners, and we can
name them by the corresponding determiner phrase in italics (in, say, English).
Here are a few examples, starting with some already mentioned (|X| is the
cardinality of the set X). For all M and all A,B ⊆M ,

allM (A,B) ⇐⇒ A ⊆ B
(allei)M (A,B) ⇐⇒ ∅ 6= A ⊆ B
noM (A,B) ⇐⇒ A ∩B = ∅
at least twoM (A,B) ⇐⇒ |A ∩B| ≥ 2

exactly fiveM (A,B) ⇐⇒ |A ∩B| = 5
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all but threeM (A,B) ⇐⇒ |A−B| = 3

more than two-thirds of theM (A,B) ⇐⇒ |A ∩B| > 2/3 · |A|
mostM (A,B) ⇐⇒ |A ∩B| > |A−B|
the tenM (A,B) ⇐⇒ |A| = 10 & A ⊆ B
John’sM (A,B) ⇐⇒ ∅ 6= A ∩ {a : John ‘possesses’ a} ⊆ B
no except JohnM (A,B) ⇐⇒ A ∩B = {John}
some but not allM (A,B) ⇐⇒ A ∩B 6= ∅ 6= A−B
infinitely manyM (A,B) ⇐⇒ A ∩B is infinite

an even number ofM (A,B) ⇐⇒ |A ∩B| is even

Also,

(6) let 1 (0) be the trivially true (false) quantifier (at least zero, fewer than
zero).

The following properties of quantifiers will be relevant:

(7) a. Q is conservative (Conserv) iff QM (A,B)⇔ QM (A,A∩B)

b. Q satisfies extension (Ext) iff for A,B ⊆M ⊆M ′, QM (A,B) ⇔
QM ′(A,B)

c. Q is closed under isomorphism (Isom) iff for A,B ⊆M and A′, B′ ⊆
M ′, |A−B| = |A′−B′|, |A∩B| = |A′∩B′|, |B−A| = |B′−A′|, and
|M− (A∪B)| = |M ′− (A′∪B′)|, entails QM (A,B)⇔ QM ′(A′, B′)

Call the first argument of a type 〈1, 1〉 quantifier its restriction and the second
its scope. Conserv and Ext together mean that quantification is in effect
restricted to the restriction argument (Peters and Westerst̊ahl, 2006, ch. 4.5).
All quantifiers interpreting natural language determiners, in particular all those
listed above, satisfy these two properties. Many satisfy Isom as well; in the
list above, all do except those mentioning particular individuals, i.e. all except
John’s and no except John.

Ext entails that the universe is irrelevant, so we may drop the subscript M

for such quantifiers, as we in effect did in Definition (4) of the various negations.
One easily sees that the combination Conserv + Ext is preserved under inner
and outer negation (and hence under duals),5 and so is Isom. Also, note that
Conserv + Ext entails that the definition of inner negation may be expressed
as follows:

(8) Q¬(A,B) ⇐⇒ Q(A,A−B)

In what follows, we assume that these two properties hold of the quantifiers
mentioned.

5But this fails for e.g. contrariety: it is easy find quantifiers Q and Q′ which are contraries
and such that Q satisfies Conserv + Ext but Q′ doesn’t.
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2.2 Modern vs. classical squares

Every type 〈1, 1〉 quantifier spans a (modern) square. Define:

(9) square(Q) = {Q,¬Q,Q¬, Qd}

The following facts are easily verified.

Fact 1
(a) square(0) = square(1) = {0,1}.
(b) If Q is non-trivial, so are the other quantifiers in its square.

(c) If Q′ ∈ square(Q), then square(Q) = square(Q′).

(d) square(Q) has either two or four members.

By (c), any two squares are either identical or disjoint. As to (d), a square
normally has four members, but it can happen that Q = Q¬ (and thus Qd =
¬Q).

Example 2
This holds when Q expresses identical conditions on A ∩ B and A − B (cf. (8)
above), such as the following quantifier in the case when k = n,

Q(k,n)(A,B) ⇐⇒ |A−B| = n & |A∩B| = k

or the quantifier

exactly half (A,B) ⇐⇒ |A∩B| = |A−B|

A more spectacular example is due to Ed Keenan, who noted that the sentences

(10) a. Between one-third and two-thirds of the students passed.
b. Between one-third and two-thirds of the students didn’t pass.

are logically equivalent, i.e. that if Q = between one-third and two-thirds of the,
then Q = Q¬.6

Thus, applying these kinds of negation to type 〈1, 1〉 quantifier results in a
rather robust ‘square behavior’. And the main point here is that nothing similar
holds for classical squares of opposition. To state this, we need to say what a
classical square is. The following notion seems natural.

6See, for example, Keenan (2005). This observation is no mere curiosity, but a consequence
of the following two general facts:

(i) a. (at most p/q of the)¬ = at least (q-p)/q of the (0 < p < q)

b. (Q1 ∧Q2)¬ = Q1¬ ∧ Q2¬

Using this and the fact that Q¬¬ = Q one can verify that between (q-p)/q and p/q of the
(for q-p ≤ p) is identical to its inner negation. Note that the observation above about the
quantifier exactly half is an instance of this.
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(11) Definition. A classical square is an arrangement of four quantifiers
as traditionally ordered and with the same logical relations – contra-
dictories, contraries, subcontraries, and subalternates – between the
respective positions.

Now each position determines the diagonally opposed quantifier, i.e. its outer
negation, but not the quantifiers at the other two positions. For example, one
may check the following:

Fact 3
The square

[A: at least five; E: no; I: some; O: at most four ]

is classical. More generally, for n ≥ k,

[A: at least n; E: fewer than k ; I: at least k ; O: fewer than n]

is classical.

The classical squares in Fact 3 look completely unnatural. There is no
interesting sense, it seems, in which no is a negation of at least five or at most
four. I conclude that the debate over issues pertaining to the Aristotelian square,
such as those listed at the end of section 1.2, is to a large extent restricted to
that particular configuration, and does not generalize to other quantifiers. In
contrast, the modern square exhibits a completely general pattern of negation for
type 〈1, 1〉 quantifiers, and thereby for the interpretation of simple and complex
natural language determiners.7

3 Identifying the corners

In view of the preceding remarks, it looks like a mildly interesting task to inves-
tigate how various (modern) squares of opposition are ‘manifested’ in a language
like English. In the next section I look at a few examples. But first we should
deal with another matter.

While square(Q) uniquely specifies the quantifiers involved, it says nothing
about how to distinguish the corners. Can we also find quantitative and quali-
tative aspects in the squares? Is it possible to identify A, E, O, and I corners
in an arbitrary quantified square?8

7I am of course not claiming that these observations about negation and the square of
opposition are new. The identification of the three forms of negation is made, for example,
in Barwise and Cooper (1981) and Keenan and Stavi (1986) (as noted, Keenan calls inner
negation post-complement), and it is fairly obvious that they generate squares of arbitrary
quantifiers. Brown (1984) compares these to Aristotle’s square, and Löbner (1990) also studies
modern squares for other quantifiers (he calls them duality squares), although he disagrees
with much of the generalized quantifier analysis of noun phrases. But it does seem to me that
the behavior of modern squares of opposition in the context of natural language semantics has
not been sufficiently explored in the literature. Exactly what I mean by this will be apparent
in the following sections.

8Thanks to Larry Horn for directing my attention to this question.
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In general, the answer is No. But in many cases we can obtain an identifica-
tion, or at least a partial one, by suitably generalizing features of thoses corners
in the Aristotelian square. The features I have in mind are purely semantic ones.
Thus, I am not here attempting to say anything about which quantifiers in a
square are more basic in terms of, say, conceptual or computational simplicity.

3.1 Monotonicity

A striking feature of the quantifiers in the Aristotelian square is their mono-
tonicity behavior. Indeed, these quantifiers are doubly monotone (with a small
caveat for the A and O corners).

(12) a. Q is right monotone increasing (mon↑) iff
Q(A,B) & B ⊆ B′ ⇒ Q(A,B′)

b. Q is right monotone decreasing (mon↓) iff
Q(A,B) & B′ ⊆ B ⇒ Q(A,B′)

c. Q is left monotone increasing (↑mon) iff
Q(A,B) & A ⊆ A′ ⇒ Q(A′, B)

d. Q is left monotone decreasing (↓mon) iff
Q(A,B) & A′ ⊆ A⇒ Q(A′, B)

Q is doubly monotone if it has both a left and a right monotonicity property.
For example, all is ↓mon↑.9

Fact 4
(Peters and Westerst̊ahl, 2006, ch. 5) The monotonicity behavior of Q deter-
mines the monotonicity behavior of all elements of square(Q):

1. Q is Mon↑ iff Q¬ is Mon↓ iff ¬Q is Mon↓ iff Qd is Mon↑
2. Q is ↑Mon iff Q¬ is ↑Mon iff ¬Q is ↓Mon iff Qd is ↓Mon

3. So if Q is doubly monotone, all four combinations are exemplified in its
square.

This means that right monotonicity could be seen as quality, with Mon↑ as
affirmative and Mon↓ as negative. Also (but less naturally), left monotonicity
could be seen as quantity, with ↑Mon as particular and ↓Mon as universal.
Thus, we can identify the exact position in the square of any doubly monotone
quantifier.

However, many quantifiers are only right monotone, like the proportional
quantifiers. So we can say, for example, that at least two-thirds of the is affir-
mative: it is either A or I, but we cannot say which. And this is not unreason-
able: the dual of at least two-thirds of the is more than one-third of the, and it

9allei is mon↑ but only weakly ↓mon, in the sense that Q(A,B) & ∅ 6= A′ ⊆ A⇒ Q(A′, B).
See section 4.4 for other weak monotonicity properties. As shown in (Peters and Westerst̊ahl,
2006, ch. 5), the four properties listed above do not exhaust the monotonicity behavior of the
quantifiers in Aristotle’s square, but they are the only ones that will be used in this paper.
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seems arbitrary which of these two should go into the A position. In any case,
monotonicity cannot decide it (but see section 3.3 below).

We cannot require a certain monotonicity behavior of the quantifiers in
square(Q), since many quantifiers are neither left nor right monotone, such
as an even number of or exactly ten (though the latter is a conjunction of a
↑mon↑ and a ↓mon↓ quantifier). Rather, the rule should be that when Q ex-
hibits monotonicity, the corners of square(Q) can be (partially) identified as
described.

3.2 Symmetry

We can get some more help from a property that was identified and discussed
already by Aristotle, who noted that the order between the two arguments of
the quantifier is irrelevant at the I and E corners.

(13) a. Q is symmetric iff Q(A,B)⇒ Q(B,A).

b. Q is co-symmetric iff Q¬ is symmetric.

Fact 5
(Peters and Westerst̊ahl, 2006, ch. 6.1) The symmetry behavior of Q determines
the symmetry behavior of all elements of square(Q):

1. Q is symmetric iff Q¬ is co-symmetric iff ¬Q symmetric iff Qd is co-
symmetric

2. Also, under Conserv and Ext, symmetry is the same as intersectivity:
if A ∩ B = A′ ∩ B′ then Q(A,B) ⇔ Q(A′, B′). So co-symmetry = co-
intersectivity: if A−B = A′ −B′ then Q(A,B)⇔ Q(A′, B′).

Again, we cannot require that two quantifiers in square(Q) be (co-)symmetric,
since e.g. squares of proportional quantifiers contain no symmetric quantifiers.
But when there is symmetry behavior, Fact 5 says that we can use it to distin-
guish the I and E from the A and O corners.

Thus, if Q is right monotone and either symmetric or co-symmetric, then
we can again pinpoint its exact position in the square, given that the I and E
positions are symmetric, and the A and O positions co-symmetric. For example,
at most ten is at the E position. But we already knew that, since at most ten
is ↓Mon↓. Indeed, if Q is right monotone and symmetric, it is clearly also left
monotone. In fact, the cases where symmetry would give extra information are
somewhat limited. This is also illustrated by the next result. Let Fin mean
that attention is restricted to finite universes.10

Fact 6
(Conserv, Ext, Isom, Fin) If Q is Mon↑, and symmetric, then Q = at least
n, for some n ≥ 0.

10Results like the next fact which rely on Conserv, Ext, Isom, and Fin are often easily
proved with a ‘number triangle argument’; see Peters and Westerst̊ahl (2006) for explanations
and several examples. I will not give these proofs here.
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Thus, we only get extra information for cases like an even number of, which
satisfies all assumptions of Fact 6 except monotonicity, and no except John,
which is Conserv, Ext, and symmetric but not Isom or right monotone. This
gives us two possible configurations of square(an even number of ) and square(no

except John).
We should also ask, however, if the two criteria for positioning quantifiers in

squares, monotonicity and symmetry, can ever conflict with each other. After
all, the intuitions behind them are rather different. A conflict would occur if
we found a symmetric quantifier that was also either ↓Mon↑ or ↑Mon↓ (and
correspondingly for co-symmetry). Fortunately, this cannot happen:

Fact 7
(Conserv, Ext) If Q is symmetric and either ↓Mon↑ or ↑Mon↓, then Q is
trivial (either 0 or 1).

Proof. Suppose Q is symmetric and ↓Mon↑. If Q 6= 0, there are A,B (by Ext,
we don’t have to worry about the universe) such that Q(A,B) holds. We show:

(14) For all sets C, Q(C,C).

This is enough, since then, for any sets D,E, we have Q(D ∩ E,D ∩ E), hence
Q(D ∩ E,D) by Conserv, so Q(D,D ∩ E) by symmetry, and so again by
Conserv, Q(D,E). This means that Q = 1.

To prove (14), take any set C. We have the following chain of implications:
Q(A,B) ⇒ Q(A ∩ C,B) (by ↓Mon) ⇒ Q(A ∩ C,A ∩ B ∩ C) (by Conserv)
⇒ Q(A ∩ C,C) (by Mon↑) ⇒ Q(C,A ∩ C) (by symmetry) ⇒ Q(C,C) (by
Mon↑).

If Q is instead ↑Mon↓, then ¬Q is ↓Mon↑ and symmetric (Facts 4 and 5),
hence trivial by the above, and therefore so is Q. 2

This is reassuring, and indicates that the intuitions behind identifying the
corners by means of monotonicity and symmetry are quite robust.

Just as the selection of monotone and symmetric quantifiers is rather re-
stricted (Fact 6), so is the choice of doubly monotone quantifiers, at least when
Isom is presupposed. One can show the following (Westerst̊ahl, 1989, sect. 4.3):

Theorem 8 (Conserv, Ext, Isom, Fin) ↑Mon↑ quantifiers are finite dis-
junctions of quantifiers of the form at least n of the k or more, i.e. |A| ≥
k & |A ∩ B| ≥ n (0 ≤ n ≤ k). More generally, ↑Mon quantifiers are finite
disjunctions of quantifiers of the form |A ∩B| ≥ n & |A−B| ≥ k.

However, there is an interesting class of non-Isom quantifiers with significant
monotonicity properties: the possessives. For example, at least five of John’s is
↑Mon↑, hence belongs to the I corner. And (all of ) John’s is Mon↑ and weakly
↓Mon (you can decrease A as long as something belonging to John remains; cf.
note 9), so it goes in the A corner. On the other hand, most of John’s is Mon↑
but not left monotone, so it is affirmative, but there seems to be no logical
indication of whether it is A or I. We come back to this in section 4.4.
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3.3 Summing up

In addition to monotonicity and symmetry, one can sometimes use a more
pragmatic and loose criterion, at least as a rule of thumb for drawing squares:
square(Q) should reduce to the (modern) Aristotelian square in limiting cases.
What a limiting case is varies with the type of quantifier considered, but we will
see several examples below where this notion is quite natural.

In sum, two semantic features of the Aristotelian square generalize to arbi-
trary quantifiers, and they can often be used to identify, at least partly, A, E,
O, and I corners in quantified squares. Surprisingly many quantifiers in natural
languages are monotone and/or symmetric.11 Sometimes other criteria seem
natural as well. On the other hand, the endeavor of finding unique properties of
each corner in squares of opposition should not be taken too far, I think. There
is no obvious semantic reason why each such corner should always be identifiable
in this way. After all, square(all) is just one of infinitely many squares.

It is now high time to have a look at some examples of squares.

4 Examples

4.1 Numerical quantifiers

By a numerical quantifier I intend one of the form at least n (n ≥ 0) or Boolean
combinations (including inner negation) thereof, i.e. also, for example, at most
n, more than n, all but n, exactly n, between k and n. Here is a typical square in
this class, square(at least six ) (Figure 5). In this diagram and the following ones,
I use the convention that italics marks a quantifier interpreting a corresponding
English determiner, so that one can see directly which corners of the square are
‘realizable’ as simple or complex determiners.

The quantifiers in Figure 5 are doubly monotone, so there is no question
about the identification of the appropriate corners. In the limiting case, when
six is replaced by one (or five by zero) we get square(all).

Before making some comments, let us look at another case (Figure 6): This
time there is no monotonicity, but we have symmetry and co-symmetry, so
exactly five should be either at the E or the I corner. The choice made in Figure
6 to place in at the E corner is dictated by the fact that with five replaced by
zero, we again obtain square(all).

These squares are perhaps not very exciting, but there is nothing wrong
with them. The truth conditions at each corner are clear, and one sees how
English ‘realizes’ at least five of the eight corners by means of determiners. It
is somewhat doubtful whether “all but at least six” is a well-formed English
determiner; see Peters and Westerst̊ahl (2006, p. 132) for some discussion. No
determiners seem to correspond to the I and O corners of square(exactly five).

11See also ch. 5.5 of Peters and Westerst̊ahl (2006), where it is shown that symmetry can in
fact be seen as a monotonicity property too. So basically, it is in terms of monotonicity that
I am trying to cash in the Aristotelian and medieval ideas (with the somewhat misleading
labels) of quality and quantity.
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all but at most five A are B
|A−B| ≤ 5

at most five A are B
|A ∩B| ≤ 5

at least six A are B
|A ∩B| ≥ 6

“all but at least six A are B”
|A−B| ≥ 6

Figure 5: square(at least six )

all but five A are B
|A−B| = 5

(exactly) five A are B
|A ∩B| = 5

“not five A are B”
|A ∩B| 6= 5

all but five A are not B
(with wide scope of “not”)
|A−B| 6= 5

Figure 6: square(exactly five)
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But the main point here is that these squares are far from classical. For
example, |A∩B| ≤ 5 and |A−B| ≤ 5 are compatible (provided |A| ≤ 10), so they
are not contraries. And |A∩B| = 5 does not imply |A−B| 6= 5 (unless |A| 6= 10),
etc. Will the squares become classical under suitable presuppositions, just as
square(all) becomes classical if one presupposes that the restriction argument is
non-empty? They will, but the presuppositions are not ones that anyone would
deem reasonable in contexts where these expressions are used. This is seen from
the next (easily verified) fact.

Fact 9
(a) square(at least n+ 1) is classical iff |A| > 2n is presupposed.

(b) square(exactly n) is classical iff |A| 6= 2n is presupposed.

Obviously, it makes no sense at all to have

(15) Five students passed the exam.

presuppose that the number of (salient) students was distinct from ten. Exactly
five simply doesn’t fit in a classical square of opposition.

4.2 Proportional quantifiers

at least 2/3 of the A are B

|A ∩B| ≥ 2/3 · |A|
at most 1/3 of the A are B

|A ∩B| ≤ 1/3 · |A|

more than 1/3 of the A are B

|A ∩B| > 1/3 · |A|
fewer than 2/3 of the A are B

|A ∩B| < 2/3 · |A|

Figure 7: square(at least 2/3 of the)

In Figure 7, Q = at least 2/3 of the is Mon↑, but not left monotone or
symmetric, so two configurations are possible: either Q or Qd goes in the A
corner. But it is natural to think of p = q as a limiting case of at least p/q of
the, and then |A ∩ B| ≥ p/q · |A| becomes |A ∩ B| ≥ |A|, i.e. A ⊆ B (assuming
Fin, which is reasonable for proportional quantifiers). So putting Q in the A
corner, we again get square(all) in the limiting case.

We note that all four corners are ‘realized’ as English determiners, and that
the square is not classical. However, in this case it is at least possible to argue
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that there is existential import at each corner, namely, if one gives a composi-
tional analysis of determiners of the form [Det of the], and notes that the does
have existential import.12 But if A 6= ∅ is added to the truth conditions, we no
longer have a (modern) square. (But we do get a classical one.) This could be
taken to favor a presuppositional analysis of proportional quantifiers as regards
existential import.

Alternatively, we can of course consider square(at least 2/3 of the+), where
at least 2/3 of the+(A,B) ⇔ |A ∩ B| ≥ 2/3 · |A| > 0. In this square (which
incidentally is both classical and modern), we get the same problem at the O
and I corners that the Aristotelian square had at the O corner, i.e. that the
truth condition is a disjunction, one of whose disjuncts is A = ∅. The whole
matter boils down to understanding exactly what happens when proportional
determiners occur in negation contexts. This might be interesting to investigate,
but I will not pursue it here.

4.3 Exceptive quantifiers

Exceptive quantifiers, i.e. quantifiers involved in the interpretation of exceptive
noun phrases, like “every professor except Mary” or “No students except for-
eign exchange students”, have been studied extensively in the literature, (see
Peters and Westerst̊ahl (2006, ch. 8) for an overview of the issues involved and
a proposed general analysis). Their interaction with negation is not without
interest. Here I just exemplify with the very simplest case (Figure 8).

every A except Mary is B

A−B = {m}
no A except Mary is B

A ∩B = {m}

A ∩B 6= {m}
A−B 6= {m}‘if Mary then some other’ A is B

Figure 8: square(every except Mary)

In this square there is (co-)symmetry and no monotonicity. But in the limit-
ing case when the exception set is empty we obtain square(all). square(every
except John) is both modern and classical. The O corner appears to be unreal-
ized. A suggestion (from Peters and Westerst̊ahl (2006, ch. 4.3)) has been made

12Such such an analysis is given in Peters and Westerst̊ahl (2006, ch. 7.11).
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in Figure 8 for the I corner; it should be taken as possible English determiner
with the desired interpretation.

4.4 Possessive quantifiers

The final example comes from possessive constructions. It relies on the account
of possessives given in chapter 7 of Peters and Westerst̊ahl (2006), and on fur-
ther development of that work in Peters and Westerst̊ahl (2010).13 But my
remarks here, which are meant only to illustrate how these quantifiers interact
with negation, are mostly independent of the fine details of the semantics of
possessives. I will just state the bare essentials needed to present the examples.

The main observation is that possessives, in prenominal as well as postnom-
inal form, involve two quantifiers, one (Q1) over the ‘possessors’ and the other
(Q2) over the ‘possessions’. This holds for all possessives,14 even though Q2 is
sometimes implicit. The following examples illustrate this.

(16) a. Mary’s pupils are bright.
b. No car’s tires were slashed.
c. Most of John’s friends came to the party.
d. Some pupils of most teachers failed the exam.

In (16-d) both quantifiers are clearly visible: Q1 = most quantifies over teachers
(the ‘possessors’) and Q2 = some quantifies over pupils (the ‘possessions’). In
(16-c), Q2 (most) is again explicit; the ‘possessor’ is John, and we can think of
John as a Montagovian style type 〈1〉 quantifier. But in (16-a) and (16-b), Q2

is implicit. In (16-a) it is presumably all. But in (16-b) it is unlikely to be all ;
the sentence doesn’t normally express that no cars had all of their tires slashed
(which is consistent with lots of cars having a few tires slashed); rather, it says
that no car had any tire slashed, i.e. Q2 = some.

This leads us to take the genitive suffix “’s” as well as the genitive preposition

13There is a vast literature on possessives, and it may seem strange that I have to refer
to a relatively new account and not to some standard theory. But the fact is that this
literature has been mostly concerned with the simplest cases of possessive constructions, and in
particular not paid attention to their doubly quantificational nature, which is crucial here, but
easily missed in the simplest cases. An exception, however, is Barker (1995), who notes that
possessives involve quantification both over the possessors and the possessions. He attempts to
handle both at the same time with a form of unselective binding à la Lewis (1975). Using two
monadic quantifiers instead of one polyadic quantifier simplifies matters; the relation between
Barker’s account and ours is discussed in Peters and Westerst̊ahl (2010).

14That is, if one disregards modifying or descriptive uses of the genitive. This use is most
clear in compound noun-like constructions like “child’s toys” or “men’s room”, but it can also
occur with quantifiers, and there can be an ambiguity between the modifying use and what
we call the quantifying use, as in

(i) Five students’ tennis rackets were left in the locker room.

In the modifying use, five quantifies over tennis rackets: ‘five tennis rackets of the kind used
by students were left’. In the quantifying use, it quantifies over students: ‘five students were
such that their tennis rackets (which together may be more than five) were left’. I consider
only quantifying uses here.
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“of” to denote a higher-order operator Poss, which takes Q1 and Q2, as well as
a set C and a binary relation R as arguments, and yields a type 〈1, 1〉 quantifier
as output:

(17) Three
Q2

athletes
A

of
Poss

each
Q1

country
C

paraded.
B

Note that “Three of each country’s athletes paraded” means exactly the same.
The only part of the semantics which is not explicit in these sentences is the
possessor relation R. That is precisely correct (we claim), since that relation
is ‘free’ in the sense that even though a default relation exists in many cases,
one can always think of contexts where a completely different relation would
be intended. Even “John’s brothers” can in a suitable context refer to some
brothers that John is, say, responsible for, but who are not brothers of John.
We thus leave R as a parameter in the semantics.

The definition of Poss is as follows:15

(18) Poss(Q1,C,Q2,R)(A,B) ⇐⇒ Q1(C∩domA(R), {a : Q2(A∩Ra, B)})

I will not be concerned here with further motivation of this definition, just
explain that Ra is the set of things ‘possessed’ by a, {b : R(a, b)}, and domA(R)
is the set of things ‘possessing’ something in A, {a : A ∩Ra 6= ∅}.

Now let us see how Poss behaves under negation. The following fact is easily
verified.

Fact 10
(a) ¬Poss(Q1, C,Q2, R) = Poss(¬Q1, C,Q2, R)

(b) Poss(Q1, C,Q2, R)¬ = Poss(Q1, C,Q2¬, R)

(c) Poss(Q1, C,Q2, R) = Poss(Q1¬, C,¬Q2, R)

So we know what the inner and outer negation of Poss(Q1,C,Q2,R) is, and
thus its square of opposition. For example, for the universal reading of Mary’s,
i.e. the one with Q2 = all, one verifies that according to (18),16

(19) Mary’s(A,B) ⇐⇒ ∅ 6= A ∩Rm ⊆ B

where m = Mary. In other words, “Mary’s As are B” says that Mary ‘possesses’
at least one A (a kind of possessive existential import), and all of the As she
‘possesses’ are B. We get the square of Figure 9.

We see from (19) that Mary’s is Mon↑ and weakly ↓Mon (you can decrease
A as long as A ∩ Rm 6= ∅), so it should be in the A corner. Likewise, at the

15It can be shown that when Q1 and Q2 are Conserv and Ext, so is Poss(Q1,C,Q2,R),
which is why the universe M has been left out in (18).

16Actually, (18) is formulated for a type 〈1, 1〉 Q1 with a ‘frozen’ noun argument C, as in
each country, but Mary is a type 〈1〉 quantifier Im (defined by Im(B)⇔ m ∈ B). So to apply
(18) we need to rewrite Im as a ‘frozen’ type 〈1, 1〉 quantifier; this can be done, for example,
with Q1 = allei and C = {m}. In Peters and Westerst̊ahl (2006, ch. 7) we argue that this
apparently ad hoc move (a) gives correct truth conditions in all cases where it is needed, and
(b) is necessary if one wants a unified account of possessives.
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Mary’s A are B

∅ 6= A∩Rm ⊆ B

none of Mary’s A are B

∅ 6= A∩Rm ⊆ B

Mary has no A or

some of her A are B

A∩Rm = ∅ ∨ A∩Rm 6⊆ B

Mary has no A or

not all of her A are B

A∩Rm = ∅ ∨ A∩Rm 6⊆ B

Figure 9: square(Mary’s)

E corner we have Mon↓ and weak ↓Mon. But because these left downward
monotonicities are weak, we do not have double monotonicity at the remaining
two corners. More exactly, the I corner is Mon↑ but not ↑Mon (since we can
have A ∩ Rm = ∅, A ⊆ A′, and ∅ 6= A′ ∩ Rm ⊆ B), and the O corner is Mon↓
but not ↑Mon. But the existing monotonicities suffice to uniquely name the
corners of square(Mary’s).

Now, while in this case the E corner provides a natural kind of negation of
“Mary’s As are B”, the O corner does not, and the I corner too seems odd.17

That is, it is unlikely that

(20) Mary’s pupils aren’t bright.

could mean that either Mary has no pupils or some of her pupils are not bright.
Even for the logician’s

(21) It is not the case that Mary’s pupils are bright.

one would be hard pressed to get that reading. Still, (20) is ambiguous. It can
mean what the inner negation yields, that she has pupils but none of them are
bright. But it also seems possible to use (20) to express that she has pupils
and some of them aren’t bright. This becomes clearer if we start instead from a
version of the positive statement, i.e. the universal reading of (16-a), where Q2

is explicit:

(22) All of Mary’s pupils are bright.

Now it is rather clear that

17Note that the I corner of a square, i.e. the dual of the A corner, should not be seen as a
form of negation on a par with the E and O corners. It is rather a kind of double negation.
Still, it is often ‘realized’ in English, but the truth condition at that corner in Figure 9 seems
distinctly odd.
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(23) All of Mary’s pupils aren’t bright.

has both readings (though this time with a preference for the second one),
whereas

(24) Not all of Mary’s pupils are bright.

seems to have only the second reading. But none of these negative statements
expresses the truth conditions of the O corner.

It might seem natural to deal with this situation similarly to a strategy
hinted at for proportional quantifiers earlier, i.e. to always presuppose ‘posses-
sive’ existential import, so that at all corners in Figure 9, A∩Rm 6= ∅ is assumed.
But this overlooks two important facts. First, although contradictory negation
doesn’t seem to occur for (16-a), it occurs for other possessives. For example,
consider

(25) Not everyone’s needs can be satisfied with standard products.

This seems simply to deny that everyone is such that (all) his/her needs can
be satisfied with standard products, i.e. it says that someone has at least one
need that cannot be so satisfied. Note that when everyone’s is analyzed with
Poss according to (18), there is no ‘possessive’ existential import, because Q1

= every (on our account) doesn’t have existential import. And indeed it seems
that (25) can be truly uttered in the case when no one in fact has any needs
(even if it would be odd to for someone to utter it knowing that).

The second, perhaps even more compelling, fact is that our semantics using
Poss provides a straightforward way of expressing the desired truth conditions.
It is just a new form of negation, applicable in cases when a quantifier is com-
posed out of two other quantifiers as in Poss. Call this middle negation:

(26) ¬mPoss(Q1, C,Q2, R) =def Poss(Q1, C,¬Q2, R)

(By Fact 10 (c) and obvious laws of negation we also have ¬mPoss(Q1, C,Q2, R) =
Poss(Q1¬, C,Q2, R).) There is a corresponding ‘middle dual’:

(27) Poss(Q1, C,Q2, R)d
m

=def Poss(Q1, C, (Q2)d, R)

We now have a ‘square of middle opposition’:

(28) squarem(Q) =def {Q,Q¬,¬mQ,Qdm}

This square is easily seen to have the same crucial square property as the stan-
dard one:

Fact 11
If Q′ belongs to squarem(Q), then squarem(Q′) = squarem(Q).

For Mary’s, we can now check that the relations in the diagram of Figure
10 obtain. Here all four corners are realized as possessive determiners, and
we have in one diagram the two natural ways to negate (16-a). Further, the
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Mary’s
inner negation

none of Mary’s

dualm dualm¬m

some of Mary’s not all of Mary’s
inner negation
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Figure 10: squarem(Mary’s)

semantics itself gives all corners ‘possessive’ existential import, and we have
double monotonicity of the expected kind at each corner.

But we shouldn’t stop there. Ordinary contradictory negation and ordinary
dual also exist for possessive quantifiers. Moreover, square(Q) and squarem(Q)
are closely related. In fact, they represent all the possible ways to negate quan-
tifiers of this form. In principle, considering the four standard possibilites for
Q1, i.e. the four members of square(Q1), and similarly for Q2, there would be 16
corresponding cases for Poss(Q1, C,Q2, R). But, using Fact 10 (c) and standard
laws of negation, one sees that

Fact 12
Of the 16 cases for putting, or not, inner and outer negations and duals in
Poss(Q1, C,Q2, R), only 8 yield distinct quantifiers.

Furthermore, these 8 quantifiers are naturally represented in a cube of op-
position, that we can define by means of the diagram in Figure 11, for Q =
Poss(Q1, C,Q2, R). Here, the front side of the cube is square(Q), and the top
side is squarem(Q). Also, the back side is square(¬mQ), and the bottom side
is squarem(¬Q). This means that the four horizontal edges of the cube (ori-
ented as in the diagram) stand for inner negation, the four vertical edges stand
for dual, and the four remaining, slanted, edges for middle dual. Likewise, the
diagonals of the front and back faces represent outer negation, and those on
the top and bottom faces middle negation. The remaining diagonals, those on
the remaining sides and the four diagonals inside the cube, also stand for easily
identifiable operations on quantifiers of the form Poss(Q1, C,Q2, R).

The robustness of this representation is indicated by the following fact.

Fact 13
(a) If Q′ ∈ cube(Q), then cube(Q′) = cube(Q).
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Figure 11: cube(Q)

(b) The same ‘cubic behavior’ is exhibited by any binary operation F from
quantifiers to quantifiers satisfying the conditions in Fact 10:

• ¬F (Q1, Q2) = F (¬Q1, Q2)
• F (Q1, Q2)¬ = F (Q1, Q2¬)
• F (Q1, Q2) = F (Q1¬,¬Q2)18

Can we distinguish corners also in the cube? Continuing to use monotonicity
as a guide, and following the example Mary’s, we calculate:

Fact 14
The monotonicity behavior of cube(Mary’s), oriented as in Figure 11 with Q =
Mary’s, is as depicted in Figure 12.

Interestingly, the monotonicity facts for the two ordinary squares, i.e. the
front and back sides, of this cube are similar but not quite the same. At the front
(square(Mary’s)), we only have weak left monotonicity at the A and E corners,
and consequently only right monotonicity at the O and I corners. At the back
(square(¬mMary’s)), on the other hand, we have full double monotonicity at
each corner. Still, this is enough to uniquely name each corner as we have

18Another example of an operation of the kind mentioned in (b), very different from Poss, is
iteration, i.e. the natural way to combine the two quantifiers occurring in simple sentences with
a quantified subject and object (see, for example, Peters and Westerst̊ahl (2006, ch. 10.1)).
The operation It takes two type 〈1〉 quantifiers and yields a type 〈2〉 quantifier (or two type
〈1, 1〉 quantifiers yielding a type 〈1, 1, 2〉 quantifier), so that, for example, the interpretation
of

(i) At least two critics reviewed four films.

is obtained by iterating the type 〈1〉 quantifiers Q1 = at least two critics and Q2 = four films,
and applying It(Q1, Q2) to the relation reviewed. I am not saying that the corresponding
cube of opposition has the same interest as in the possessive case, but the formal similarity
between the ways these operators interact with negation is at least striking.
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Figure 12: Monotonicity in cube(Mary’s) (w means ‘weak’)

done for ordinary squares. In the cube, then, we will have two A corners,
two E corners, etc. Specifically, at the back side we have, going clockwise and
starting from ¬mMary’s: O, E, A, I. Thus, the square in the back is ‘upside
down’ compared to the one at the front; see Figure 13. Note that this is also

A E

I O

�
��

I

�
��

O

E

�
��

�
��

A

Figure 13: Corners in cube(Mary’s)

consistent with the naming suggested earlier for the corners of squarem(Mary’s)
(and squarem(¬Mary’s)).

Another thing emerging from the examples discussed so far is that the left
monotonicity behavior of a possessive quantifier Q does not determine that of
the other quantifiers in squarem(Q), in contrast with the situation for ordinary
squares. More precisely, we have the following:
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Fact 15
If Q is a possessive quantifier, then Q is Mon↑ iff Q¬ is Mon↓ iff ¬mQ is

Mon↓ iff Qdm is Mon↑. But one cannot, without extra information, draw
any conclusions from the left monotonicity of Q, except for Q¬ as described in
Fact 4.

Proof. The positive claims are easily verified directly from definition (18). The
negative claims are illustrated by the top and bottom sides in Figure 12. 2

In conclusion, let us look at one more possessive example. We already noted
that in sentence (16-b), no car’s normally has an existential reading (Q2 =
some). Other sentences with no C’s can be ambiguous:

(29) No students’ library books were returned in time.

This can mean that no student returned any of his/her books in time, for ex-
ample, as uttered by someone who then concludes that the school needs to
find stronger inducements for students to return at least some library books on
time. But it could also have the universal reading that no student returned all
of his/her books in time, e.g. as said by a librarian noting that every student
who checked out library books had to pay at least one late fee.19 Not surpris-
ingly, both these readings occur in the same cube. Instead of drawing the whole
cube with all the information, I content myself with the ordinary and the mid-
dle squares of the universal reading of each car’s (equivalently, the existential
reading of no car’s): Figures 14 and 15. The truth conditions are all calculated
from the definition of Poss in (18). This time, there is no ‘possessive’ existential

each car’s A were (all) B

C ⊆ {a : A∩Ra ⊆ B}
no car’s A were B (exist.)
C ⊆ {a : A∩Ra ⊆ B}

at least one of some car’s A was B

C 6⊆ {a : A∩Ra ⊆ B}
not all of some car’s A were B

C 6⊆ {a : A∩Ra ⊆ B}

Figure 14: square(each car’s) (universal reading)

import. One sees that each C’s is ↓Mon↑, and so we have double monotonicity
at each corner (Fact 4) in Figure 14. But, as indicated in Fact 15, this does not
hold in Figure 15. The I and O corners can still be uniquely identified in this
diagram, since we have Mon↑ and Mon↓ there, respectively, and since the A

19The example is from Barbara Partee (p.c.).
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each car’s A were (all) B

C ⊆ {a : A∩Ra ⊆ B}
no car’s A were B (exist.)

C ⊆ {a : A∩Ra ⊆ B}

each car’s A were B (exist.) no car’s A were B (univ.)

C∩domA(R) ⊆ {a : A∩Ra∩B 6= ∅}C∩domA(R) ⊆ {a : A∩Ra∩B 6= ∅}

@
@
@

@
@
@�
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�

�
�
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¬m

Figure 15: squarem(each car’s) (universal reading)

and E corners were already identified, but one can verify that left monotonicity
fails at these corners. The universal reading of no C’s, as in one interpretation
of (29), is found at the O corner of squarem(each car’s).

Thus, we have identified all eight corners of cube(each car’s) (universal read-
ing). To find the truth conditions at the two corners not present in Figure 14
or 15, recall that the back side of this cube is an ordinary square with outer
negation along its diagonals. Using this, Figure 15, and Fact 10 (c), one sees
that the remaining A corner expresses the universal reading of some car’s A
were B, and the remaining E corner expresses that none of some car’s A were
B. So we also see that, due to the flexibility of the formation rules for English
possessive determiners, each corner of the cube is in this case ‘realized’ by such
a determiner.

However, the monotonicity behavior of possessive quantifiers is somewhat
complex (Peters and Westerst̊ahl, 2006, ch. 7.13), and we cannot in general
expect all corners of cubes from possessive quantifiers to be uniquely identifiable
in terms of monotonicity, even when both component quantifiers Q1 and Q2 are
monotone.

5 Concluding remarks

The square of opposition is a useful conceptual tool for understanding how
negation interacts with quantification (and thereby several other operators). It
doesn’t represent a particular quadruple of quantifiers, such as the four Aris-
totelian ones, but rather a pattern that recurs for all quantifiers. This pattern,
I have argued, uses the modern square, with the two basic forms of negation,
and their combination with each other, the dual. Characteristically, further
combination of these three operators yields nothing new; it stays within the
square.

I have not discussed which of the three operators is most basic. But such a
discussion, if one wants to embark on it, should start from the general square
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pattern, not from any particular square of opposition. We defined dual in terms
of inner and outer negation, but one can take any two of the three operators
and define the third in terms of them: Q¬ = ¬(Qd) and ¬Q = (Qd)¬. One
cannot define any of the operators, seen as operators on quantifiers, in terms of
just one of the others (they are all idempotent). In this sense, they are all on a
par. But other notions of definability can perhaps be invoked; I leave to others
to ponder whether this is a worthwhile idea.20

In this paper I have, aside from a few general observations, used examples to
illustrate the variety of negation-quantification interaction in natural language.
In particular, complex determiners built from simpler ones, such as the posses-
sive determiners, constitute a rich source of examples, a source it may be worth
exploring further.
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